

PROVINCIA DI OLBIA TEMPIO COMUNE SAN TEODORO

ADEGUAMENTO DEL PIANO URBANISTICO COMUNALE AL P.A.I.

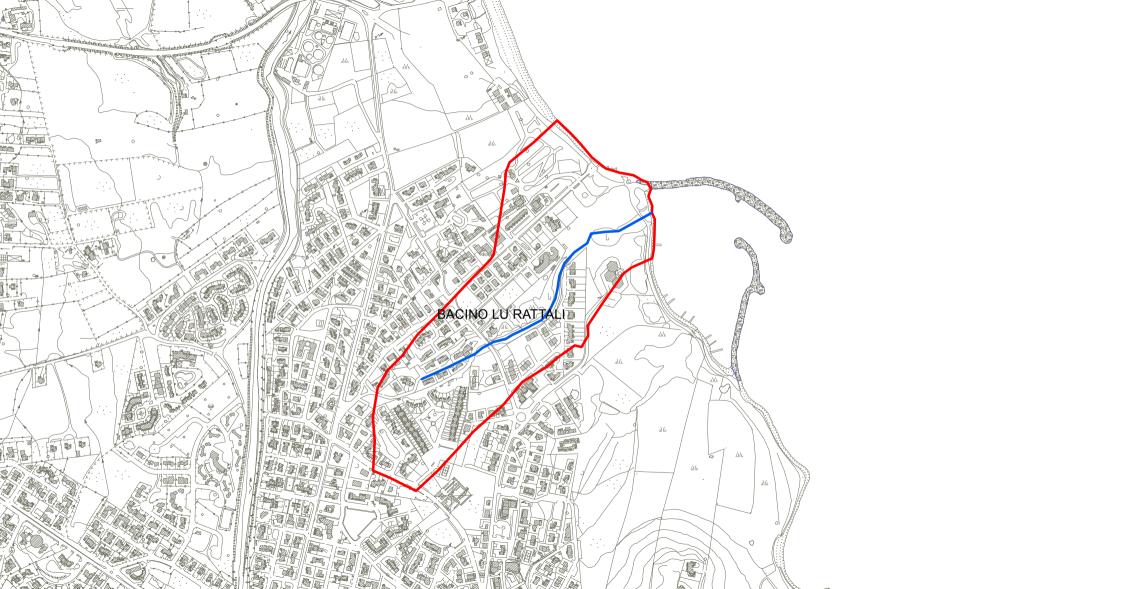
PERIMETRAZIONE DELLE AREE A PERICOLOSITA' IDRAULICA IN APPLICAZIONE DELL'ART.8 COMMA 2 DELLE NORME DI ATTUAZIONE DEL P.A.I.

LU RATTALI RELAZIONE IDROLOGICA

TAVOLA N° SCALA DATA

9.1 Ottobre 2012

I TECNICI INCARICATI


Ing. Maddalena Idili

Geol. Andrea Selis

IL RESPONSABILE DEL PROCEDIMENTO

Geom. Riccardo Inzaina

Ing. Maddalena Idili, via Stazione n. 28 - 08012 Bortigali, cell. 3285388170 - email idili.m@tiscali.it Geol. Andrea Selis, via Toscana n.3 - 08100 Nuoro, cell. 3493193280 - email andreaselis@gmail.it

COMUNE DI SAN TEODORO

LOCALITA': LU RATTALI

SUB-BACINO: LU RATTALI - FOCE

PROGETTISTA: Ing. Maddalena Idili – Dott. Geol. Andrea Selis

Formula razionale

 $Q_{max} = 0.278 * \epsilon(T_c) * \Psi * h[T_r, r(T_c, S)] * S/T_c$

Dati di progetto

$\epsilon(T_c)=$	Coefficiente di laminazione	1	
Ψ=	Coefficiente di assorbimento	0,8	
$T_c =$	Durata critica	0,55	ore
$T_r =$	Tempo di ritorno	500	anni
$r(T_c,S)=$	Coefficiente di ragguaglio delle piogge all'area del bacino	0,972327	
S=	Area del bacino	0,200	Km ²
Jm=	Pendenza media del bacino	0,03	
L=	Lunghezza asta fluviale	0,65	Km
Hm=	Altezza media del bacino rispetto alla sezione di verifica	3	m
lm=	Pendenza media asta principale	0,01	

CURVA DI POSSIBILITA' PLUVIOMETRICA SECONDO IL METODO TCEV APPLICATO ALLA SARDEGNA

 $\mu=a_1^*T_1^n$ Pioggia indice di durata T

I valori di dei parametri **a** e **n** risultano secondo il metodo TCEV tabellati a seconda della sottozona di riferimento in cui è suddivisa la Sardegna, sono espressi in funzione della pioggia indice giornaliera h_a.

$$a_1 = h_g/(0.886*24^n_1)$$

 $n_1 = -0.493+0.476 \text{ Log}_{10}h_g$

$$h_g = 80 \text{ mm}$$
 $n_1 = 0.412871$

24.31125

a₁=

(La pioggia indice giornaliera è la media dei massimi annui di precipitazione giornaliera e si può ricavare dalla carta delle isoiete)

La durata di pioggia critica può, secondo il metodo della corrivazione, essere presa pari al tempo di corrivazione calcolato secondo uno dei seguenti metodi:

		media =	0,557534 [ore]	
$T_c =$	$0,212*S^{0,231*}(H_m/J_m)^{0,289}$	Formula VAPI Sardegr=	0,553189 [ore]	(da non considerare per le dimensioni del bacino)
$T_c =$	0,108*(S*L)¹/³/√I _m	Formula di Pasini =	0,547106 [ore]	
$T_c =$	$(1,5*L+4*\sqrt{S})/(0,8\sqrt{H_m})$	Formula di Giandotti =	1,99464 [ore]	(da non considerare per le dimensioni del bacino)
$T_c =$	0,127*√(S/I _m)	Formula di Ventura =	0,567961 [ore]	

Inserire il tempo di corrivazione prescelto (preferibile inserire il valore medio)

$$T_c$$
= 0,55 ore Durata della pioggia critica μ = 18,99375 mm Pioggia indice di durata T_c

L'altezza di pioggia $h_{T_r}(T_c)$ di durata T_c con un determinato tempo di ritorno T_r in anni si ottiene moltiplicando la pioggia indice per un coefficiente di crescita K

$$K=a_{2}^{*}T_{2}^{n}$$

I valori di a₂ e n₂ si determinano con le seguenti relazioni valevoli per tempi di ritorno T_> 10 anni al variare della durata T_c

T _r =	500			
SZO 1	a ₂ =	0,46378+1,0386 Log ₁₀ T=	3,26693	
	$n_2 =$	$-0.18449+0.23032 \text{ Log}_{10}\text{T}-3.3330*10^{-2}(\text{Log}_{10}\text{T})^2=$	0,194346	se T _c <= 1 ora
	n ₂ =	-1,0563*10 ⁻² -7,9034*10 ⁻³ Log ₁₀ T=	-0,031894	se T _c >= 1 ora
SZO 2	a ₂ =	0,44182+1,0817 Log ₁₀ T	3,361296	
	$n_2 =$	$-0.18676+0.24310 \text{ Log}_{10}\text{T}-3.5453*10^{-2}(\text{Log}_{10}\text{T})^2=$	0,211104	se T _c <= 1 ora
	n ₂ =	-5,6593*10 ⁻³ -4,0872*10 ⁻³ Log ₁₀ T=	-0,016691	se T _c >= 1 ora
SZO 3	a ₂ =	0,41273+1,1370 Log ₁₀ T	3,481459	
	$n_2 =$	$-0.19055+0.25937 \log_{10} T-3.8160*10^{-2} (\log_{10} T)^2 =$	0,231508	se T _c <= 1 ora
	$n_2 =$	$1,5878*10^{-2}+7,6250*10^{-3} \text{ Log}_{10}T=$	0,036458	se T _c >= 1 ora

Inserire i dati relativi alla sezione di verifica

 $a_2 = 3,361296$

 $n_2 = 0,211104$

K= 2,962759

Coefficiente di ragguaglio r della pioggia all'area del bacino secondo la formulazione adottata dal VAPI

 $r = 1 - (0.0394*S^{0.354})*T_c^{(-0.40+0.0208*ln(4.6-ln(S)))} = 0.972327 per S< 20 \text{ Km}^2$

 $r = 1 - (0.0394*S^{0.354})*T_c^{(-0.40+0.003832*ln(4.6-ln(S)))} = 0.97181$ per S> 20 Km²

Nel caso specifico

r = 0,972327

 $h_{Tr}(T_c) = r^*K^*\mu =$ 54,71663 mm Altezza di pioggia di durata T_c avente tempo di ritorno T_r

Dal valore precedente utilizzando la formula razionale sopra riportata otteniamo la massima portata di piena avente tempo di ritorno T_r.

 $Q_{max} = 4,42508 \text{ m}^3/\text{s}$

Inserire i dati relativi alla sezione di verifica

$$a_2 = 2,930844$$

n₂=

$$n_2 = 0.184906$$

Coefficiente di ragguaglio r della pioggia all'area del bacino secondo la formulazione adottata dal VAPI

$$\begin{array}{lll} r = & 1 - (0,0394 * S^{0,354}) * T_c^{(-0,40+0,0208 * \ln(4,6-\ln(S)))} = & 0,972327 & \text{per S} < 20 \; \text{Km}^2 \\ r = & 1 - (0,0394 * S^{0,354}) * T_c^{(-0,40+0,003832 * \ln(4,6-\ln(S)))} = & 0,97181 & \text{per S} > 20 \; \text{Km}^2 \\ \end{array}$$

Nel caso specifico

$$h_{Tr}(T_c) = r^*K^*\mu =$$
 48,46266 mm Altezza di pioggia di durata T_c avente tempo di ritorno T_r

Dal valore precedente utilizzando la formula razionale sopra riportata otteniamo la massima portata di piena avente tempo di ritorno T,.

0.033423

T,= 100 $0,46378+1,0386 \text{ Log}_{10}T=$ SZO 1 $a_2 =$ 2,54098 $-0.18449+0.23032 \text{ Log}_{10}\text{T}-3.3330*10^{-2}(\text{Log}_{10}\text{T})^2=$ se T_c<= 1 ora n₂= 0,14283 $-1,0563*10^{-2}-7,9034*10^{-3} \text{Log}_{10}T=$ se $T_s >= 1$ ora n₂= -0,02637 0,44182+1,0817 Log₁₀T a₂= SZO 2 2,60522 $-0.18676+0.24310 \text{ Log}_{10}\text{T}-3.5453*10^{-2}(\text{Log}_{10}\text{T})^2=$ se T_c<= 1 ora $n_2 =$ 0.157628 $-5,6593*10^{-3}-4,0872*10^{-3} \text{Log}_{10}\text{T}=$ se $T_c >= 1$ ora $n_2 =$ -0,013834 0,41273+1,1370 Log₁₀T SZO 3 $a_2 =$ 2,68673 $-0.19055+0.25937 \text{ Log}_{10}\text{T}-3.8160*10^{-2}(\text{Log}_{10}\text{T})^2=$ se T_c<= 1 ora $n_2 =$ 0.17555 $1,5878*10^{-2}+7,6250*10^{-3} \text{Log}_{10}T=$ se $T_s >= 1$ ora n₂= 0,031128

Inserire i dati relativi alla sezione di verifica

 $a_2 = 2,6052$ $n_2 = 0,157628$

K= 2,370909

Coefficiente di ragguaglio r della pioggia all'area del bacino secondo la formulazione adottata dal VAPI

 $\begin{array}{lll} r = & & 1\text{-}(0,0394\text{*}S^{0,354})\text{*}T_{c}^{\;(\text{-}0,40+0,0208\text{*}ln(4,6\text{-}ln(S)))} = & 0,972327 & \text{per S} < 20 \text{ Km}^{2} \\ r = & & 1\text{-}(0,0394\text{*}S^{0,354})\text{*}T_{c}^{\;(\text{-}0,40+0,003832\text{*}ln(4,6\text{-}ln(S)))} = & 0,97181 & \text{per S} > 20 \text{ Km}^{2} \end{array}$

Nel caso specifico

r = 0,972327

 $h_{Tr}(T_c) = r^*K^*\mu = 43,78627$ mm Altezza di pioggia di durata T_c avente tempo di ritorno T_r

Dal valore precedente utilizzando la formula razionale sopra riportata otteniamo la massima portata di piena avente tempo di ritorno T,.

 $Q_{max} = 3,54112 m^3/s$

T,= 50 $0,46378+1,0386 \text{ Log}_{10}T=$ SZO 1 $a_2 =$ 2,22833 $-0.18449+0.23032 \text{ Log}_{10}\text{T}-3.3330*10^{-2}(\text{Log}_{10}\text{T})^2=$ se T_c<= 1 ora n₂= 0,11061 $-1,0563*10^{-2}-7,9034*10^{-3} \text{Log}_{10}T=$ se $T_c >= 1$ ora n₂= -0,023991 0,44182+1,0817 Log₁₀T a₂= SZO 2 2,279596 $-0.18676+0.24310 \text{ Log}_{10}\text{T}-3.5453*10^{-2}(\text{Log}_{10}\text{T})^2=$ se $T_c \le 1$ ora $n_2 =$ 0.123925 $-5,6593*10^{-3}-4,0872*10^{-3} \text{Log}_{10}\text{T}=$ se $T_c >= 1$ ora $n_2 =$ -0,012603 0,41273+1,1370 Log₁₀T SZO 3 $a_2 =$ 2,344459 $-0.19055+0.25937 \text{ Log}_{10}\text{T}-3.8160*10^{-2}(\text{Log}_{10}\text{T})^2=$ se T_c<= 1 ora $n_2 =$ 0,139963 $1,5878*10^{-2}+7,6250*10^{-3} \text{Log}_{10}T=$ se $T_s >= 1$ ora n₂= 0,028833

Inserire i dati relativi alla sezione di verifica

 $a_2 = 2,279596$

 $n_2 = 0,123925$

K= 2,116812

Coefficiente di ragguaglio r della pioggia all'area del bacino secondo la formulazione adottata dal VAPI

 $\begin{array}{lll} r = & & 1 - (0,0394 * S^{0,354}) * T_c^{\;\; (-0,40 + 0,0208 * \ln(4,6 - \ln(S)))} = & 0,972327 & per \; S < 20 \; Km^2 \\ r = & & 1 - (0,0394 * S^{0,354}) * T_c^{\;\; (-0,40 + 0,003832 * \ln(4,6 - \ln(S)))} = & 0,97181 & per \; S > 20 \; Km^2 \end{array}$

Nel caso specifico

r = 0,972327

 $h_{Tr}(T_c) = r^*K^*\mu = 39,09357$ mm Altezza di pioggia di durata T_c avente tempo di ritorno T_r

Dal valore precedente utilizzando la formula razionale sopra riportata otteniamo la massima portata di piena avente tempo di ritorno T,.

 $Q_{max} = \frac{3,1616}{m^3/s}$